
1

The continuing story of
Vim

Bram Moolenaar
www.moolenaar.net

Presentation given by Bram Moolenaar at Linux2000.nl, October 10 2000.

I can do this presentation in Dutch or English. If there is someone who doesn’t
understand Dutch I’ll use English.

I am the main author of Vim. Many others helped to make what it is now. I
could never have done this without their help and support.

There will be time to ask questions at the end of the presentation.

2

What is Vim?

n Text editor in the spirit of Vi
n Open-source and free
n A large number of features,

especially for programmers
n Included in all Linux distributions,

often as “Vi”

Question: Who of you have never used Vim? Who is using Vim every day?

For those of you who don’t know what Vim is. Perhaps some people typed
“Vi” and didn’t know it was actually Vim they were using.

Vim is 99% Vi compatible, but has many more features. Just one feature is
already a reason to switch from Vi to Vim: multi-level undo.

I don’t really know a good reason to keep using Vi instead of Vim.

3

The continuing story
of Vim

n History
n Development choices
n Features for programmers
n Charityware
n New in version 6.0
n Current status

In this presentation I will give an overview of the developments that Vim has
been going through.

Since this is a mixed audience, I have tried to include something interesting
both for non-Vim users and people who know Vim and want to know about the
latest developments.

4

Vim history

1988 Vim 1.0 Vi IMitation on the Amiga
1991 Vim 1.14 First public release
1992 Vim 1.22 Port to Unix, renamed to

Vi IMproved
1994 Vim 3.0 Multiple windows
1996 Vim 4.0 GUI
1998 Vim 5.0 Syntax highlighting
2000? Vim 6.0 Folding, multi-language

When I had bought an Amiga computer, I wanted to use the editor I learned on
Unix. Since there was no good Vi for the Amiga, I started with the best that
was available (a program called Stevie) and started improving it.

At first the goal was to imitate Vi. Later new functionality was added, then it
was renamed from Vi IMitation to Vi IMproved.

Ports to various operating systems have been done by different people. The
port to Unix was a milestone, since Vim started competing with Vi. Currently
Vim runs on more than a dozen different operating systems.

Over time Vim has grown constantly. It has become a complex program.
Adding functionality is taking much more effort now. But the list of features
people ask to be added only keeps getting longer.

Vim 6.0 is still being developed. More about that later.

5

Development choices

Main goal: Vi compatible, but IMproved.

Example: multi-level undo
Vi compatible: xxuu deletes two characters
 extension: xxu^R is a no-op
IMproved: xxuu is a no-op

xxu^R deletes two characters
NOT: xxu.

The first goal of Vim is to reproduce the behavior of Vi. And then add
functionality to IMprove it.

But sometimes the Vi behavior wasn’t very good. Then Vim offers the option
of doing it the Vi way or the IMproved Vim way.

Example: In Vi “u” toggles between undo and redo. Vim offers multi-level
undo. Either Vi compatible, by using CTRL-R to repeat the undo or redo, or
IMproved, using “u” for undo and CTRL-R for redo. The last is easier to use,
but not Vi compatible.

Since there are many Vim users, there is always somebody that would like to
have an option for every choice. But that results in a long, hard to use list of
options. I try to find a balance between enough flexibility and not too many
options.

Nvi uses the “.” command to repeat undo. Unfortunately this is both not Vi
compatible (in Vi the “.” repeats the “x”, not the “u”) and not easy to use. This
is clearly not a Vim choice.

-- subject break --

6

features for
programmers

n syntax highlighting
n edit-compile-fix (quickfix)
n find functions, variables, etc.
n auto-indenting
n etc.

Vim has a long list of features. To give you some impression of what it can do
I have selected only a few.

Vim is often used for programming. And I am a programmer myself.
Therefore Vim has many useful features to support programmers.

7

features for programmers

syntax highlighting

Color helps to quickly find the text you’re looking for. Especially to
distinguish comments and commands.

Vim’s syntax highlighting can also detect errors, like an unbalanced brace.
This shows the error right when you are typing. Then you can quickly fix it.

8

features for programmers

syntax highlighting

n Over 200 languages supported
n You can add your own language
n Colors can be changed
nWorks in any color terminal

Syntax highlighting is very flexible. You can just highlight a few items, like
comments, or use it to check most of the syntax.

9

features for programmers

edit-compile-fix support

:make command

The compiler can be started from within Vim. Mostly you would use the
“:make” command for this.

The error messages are parsed and Vim jumps to the right file, line (and
column if it is mentioned) for the error. This speeds up fixing reported errors a
lot.

10

features for programmers

edit-compile-fix support

nWorks right away with gcc and other
compilers

n Understands multi-line messages
n Adjustable for other compilers

The command to run the compiler and the format of error messages can be
chosen freely, to make this work for your specific compiler.

Quickfix has been present in Vim from the very early days. It has been
improved several times. Recently multi-line error messages have been added.
And recognizing the gcc message that it changes directory. New in Vim 6.0 is
recognizing the column number from a pointer in a message.

11

features for programmers

list of matches

n Find where a pattern matches and
jump to each location with :grep

A useful variant of “:make” is “:grep”. You can use it to find all locations
where a variable or function is used.

A useful application is when the arguments for a function change. Use “:grep”
to find all locations where the function is used. Then jump to each location to
correct the function call.

Listing the matches in a separate window is a new feature of Vim 6.0.

12

features for programmers

find variables

n Search for a pattern and see its use

When searching for a pattern (here “i”), all matches are highlighted. This can
be used to quickly see where a variable is used. It can be switched on and off,
of course.

There are many more features for programmers, these are just a few examples.

-- subject break --

13

Vim = Charityware

Vim is free, but it’s worth something.
Make it Shareware? Doesn’t work (e.g. for
Linux).
My choice: If you think Vim is worth
something, give to a good cause.
This is called Charityware.

Many people have expressed that Vim is better than most commercially
available editors. Would it be possible to ask money for using Vim? Probably
not. At least not for when it’s used as Vi in Linux distributions. And I don’t
really need the money myself.

My solution is to ask people to donate money to a good cause. This is called
Charityware. Not only does this raise money, it also brings awareness about
third-world problems to many people.

Does it really work? Yes, I have received many donations and found sponsors
for children. The wider Vim is spread, the more positive reactions I get.

14

Charityware

When to go for Charityware?
n you don’t need the money yourself
n shareware doesn’t work for your

program
n your software is worth something

If you write open-source software yourself, you could consider making it
Charityware too. You can use these three guidelines to make the decision.

15

Charityware

Select a good cause yourself.
For Vim: AIDS orphans in Uganda.

 http://iccf-holland.org

If you decide to make your program Charityware, you should select a good
cause that you ask people to donate to. This gives the idea a personal touch.

For Vim I have selected the Kibaale Children's Centre in the south of Uganda.
This is in an area that has been hit hard by AIDS. Many parents die, leaving
their children behind. I have worked at this center for a year. That is how I
know the work done there does really help the children.

Ask me for more information about the center and how to help them.

16

New in Vim 6.0

Survey to get user input
1. add folding (*)
2. vertically split windows (*)
3. add configurable auto-indenting (*)
4. fix all problems, big and small (+)
5. add Perl compatible search pattern
6. search patterns that cross line boundaries (*)
7. improve syntax highlighting speed (+)
8. improve syntax highlighting functionality (*)
9. add a menu that lists all buffers (*)
10. improve the overall performance (+)

When I started working on Vim 6.0 I had to choose which features to add. To
allow all Vim users to influence this choice a survey was done. A long list of
features was presented, and people could give points to each feature. This is
the resulting top-ten.

The items marked with a (+) are continuous activities. The items marked with
a (*) have been implemented in Vim 6.0. Only one item is left out.

17

new in Vim 6.0

folding

Fold a range of lines to show only one line

Folding is a major new feature in Vim 6.0.

A fold contains a range of lines. When the fold is closed, the lines are replaced
with a single line that indicates what the fold contains.

The example shows one fold for each function. This makes it easy to locate a
function. Then open the fold to see its contents.

18

new in Vim 6.0

folding

Folds can be opened to show the contents

When a fold is opened you can work on the contents.

19

new in Vim 6.0

folding

Different folding methods:
nmanually
n by indent
n defined with an expression
n by syntax
n with markers in the text

Why so many different ways to define folds? Because there is not an obvious
way that suits all users.

Defining folds with markers works most accurate. It’s possible to tell in which
fold a comment is included. But not everybody wants to add markers in his
text.

Using folding takes a little while to get used to. Once you know it, you can do
your work faster, because you have a better overview.

20

new in Vim 6.0

auto-indenting

n Previously existed only for C and
similar languages.

n Now an indent can be computed with
a Vim script, which is very flexible.

n Vim users submit indent scripts, like
with syntax highlighting.

One drawback of using a Vim script for indenting is that it won’t be very fast.
I could not think of another solution that is faster and still flexible enough.

21

new in Vim 6.0

auto-indenting

For example: Vim-script indenting

When using the “o” command on the “else” to open a new line, Vim
automatically adds two spaces of indent.

When typing an “endif” statement, it starts with too much indent, this is
corrected as soon as the statement is recognized.

22

new in Vim 6.0

Other features that are part of Vim 6.0:

• UTF-8 support: Use many languages at the same time (the screen dump
shows Thai and Braille)

• Multi-language support: translated messages and menus

• Vertical window split

• Improved performance for syntax highlighting

• Easier to use (plugins, settings files)

To see the new features, download the Vim 6.0 alpha-test release.

-- subject break --

23

status of Vim 6.0

Still under development
nMost features are present, but need

more work
n Then a lot of testing
n Should be ready early 2001
n Then Vim 6.1...

Work on Vim continues. The complexity makes it progress only slowly now.
I was hoping to finish version 6.0 in this year, but it looks like it will be early
next year.

24

The end

Questions?

I will be around for more information.

I have some extra info about Charityware and helping orphans in Uganda.

25

The end

I will be around for more information.

I have some extra info about Charityware and helping orphans in Uganda.

