
Recent Developments

Bram Moolenaar
SFI Krakow April 2018

 Vim popularity

 Vim popularity

 Vim code size

src/*.[ch]

4.0

5.0

6.0

7.0

8.0

 Impactful Changes

One has only limited time available to write code.
What to work on next to be most impactful?

 Impactful Changes

One has only limited time available to write code.
What to work on next to be most impactful?

1. Work on a feature for 2-3 months tops

 Impactful Changes

One has only limited time available to write code.
What to work on next to be most impactful?

1. Work on a feature for 2-3 months tops

2. Build one feature on top of another one

 Impactful Changes

One has only limited time available to write code.
What to work on next to be most impactful?

1. Work on a feature for 2-3 months tops

2. Build one feature on top of another one

3. Understand the user

 Impactful Changes

One has only limited time available to write code.
What to work on next to be most impactful?

1. Work on a feature for 2-3 months tops

2. Build one feature on top of another one

3. Understand the user

So, how did this work for Vim?

 Vim first releases

1991: Vim 1.14 distributed on Fish disk

Impactful changes in Vim 1.27:
● Port to Unix
● Port to MS-DOS

More supported systems == more users

 Vim 2.0

Impactful changes:

● :make and error parsing
Please users: Efficient edit - build - fix cycles

 Vim 2.0

Impactful changes:

● :make and error parsing
Please users: Efficient edit - build - fix cycles

● Vi compatibility
Please distributors (Vim on every Linux and Mac system)

 Vim 3.0

Impactful changes:

● Multiple windows and buffers
Make use of larger screens and more memory

 Vim 3.0

Impactful changes:

● Multiple windows and buffers
Make use of larger screens and more memory

● Swap file
Reliability, user trust

 Vim 4.0

Impactful changes:

● Help in a window
More complexity requires more support

 Vim 4.0

Impactful changes:

● Help in a window
More complexity requires more support

● Autocommands
Extensibility, you can’t build everything yourself

 Vim 4.0

Impactful changes:

● Help in a window
More complexity requires more support

● Autocommands
Extensibility, you can’t build everything yourself

● MS-Windows port
Reality: most users are there

 Vim 5.0

Impactful changes:

● Syntax highlighting
Making use of faster computers and better screens

 Vim 5.0

Impactful changes:

● Syntax highlighting
Making use of faster computers and better screens

● Vim script
Extensibility, you can’t build everything yourself

 Vim 6.0
Impactful changes:

● Unicode support
ASCII is no longer the standard

 Vim 6.0
Impactful changes:

● Unicode support
ASCII is no longer the standard

● Automatic indenting
Users are lazy

 Vim 6.0
Impactful changes:

● Unicode support
ASCII is no longer the standard

● Automatic indenting
Users are lazy

● Plugins
Extensibility, you can’t build everything yourself

 Vim 7.x

Impactful changes:

● Persistent undo
Don’t worry, you can go back in time (and back to the
future)

 Vim 8.0

Impactful changes:

● Jobs, Channels and Timers

Extensibility, you can’t build everything yourself
Make use of more powerful computers

 Vim 8.1

Impactful changes?

 Vim 8.1

Impactful changes:

● Terminal window
Why?

 Vim 8.1

Impactful changes:

● Terminal window
Why?

I want to debug Vim over ssh, which requires:
1. Window running gdb
2. Window running program being debugged
3. Window(s) to edit source code

 Terminal debugger

 Terminal debugger

Parts needed:
1. Terminal emulator: libvterm
2. Jobs and channels
3. Window toolbar for Step/Next/Continue...
4. Balloon to show variable values
5. Popup menu

How the parts are put together:

 Terminal window

Vim

libvterm

Job
Channel Window Toolbar

 Balloon
 Popup menu

 Terminal window
Vim
(1)

 read stdin
Decode K_DOWN

Write
VTERM_KEY_DOWN

(3)
Read bytes

Send bytes to Job

(wait)
(5)

Read bytes from Job
Write bytes to Vterm

(7)
Display screen cells
In terminal window

(wait)
(9)

Read bytes from Job
Write bytes to Vterm

(11)
Position cursor

Vterm

(2)
Convert key to
<Esc>OB

(6)
 Parse bytes

Update virtual screen
Invoke callbacks

(10)
Parse bytes

Invoke cursor
position callback

Job

(4)
Read cursor-down

(work)
Write screen updates

(work)

(8)
Write cursor move
 <Esc>[20;30H

 Terminal debugger

Debugger demo

 Terminal debugger

 Terminal debugger

 Terminal debugger

 Terminal debugger

 Terminal window

What else can you use it for?

 Terminal window
Run make in a terminal window

 Terminal window
Running external command in the GUI

 Terminal window
Testing with a screenshot diff

 Testing old style

.in file:
STARTTEST
:so small.vim
:set belloff=all
/Start cursor here
vaBiBD:?Bug?,/Piece/-2w! test.out
/^- Bug
:s/u/~u~/
:s/i/~u~/
:s/o/~~~/
:.w >>test.out

.ok file:
- Bug in "vPPPP" on this text (Webb):
 {
 }
- Bug uuun "vPPPP" uuuuuuuuun this text (Webb):

 Testing new style

.vim file:

 Testing with a screenshot
.vim file:

 Terminal window
Testing with a screenshot diff

 Vim 8.1

Release: “in a few weeks”

The end

Questions?

